]>
Raphaƫl G. Git Repositories - cdn/blob - vendor/phpqrcode/qrrscode.php
   5  * Reed-Solomon error correction support 
   7  * Copyright (C) 2002, 2003, 2004, 2006 Phil Karn, KA9Q 
   8  * (libfec is released under the GNU Lesser General Public License.) 
  10  * Based on libqrencode C library distributed under LGPL 2.1 
  11  * Copyright (C) 2006, 2007, 2008, 2009 Kentaro Fukuchi <fukuchi@megaui.net> 
  13  * PHP QR Code is distributed under LGPL 3 
  14  * Copyright (C) 2010 Dominik Dzienia <deltalab at poczta dot fm> 
  16  * This library is free software; you can redistribute it and/or 
  17  * modify it under the terms of the GNU Lesser General Public 
  18  * License as published by the Free Software Foundation; either 
  19  * version 3 of the License, or any later version. 
  21  * This library is distributed in the hope that it will be useful, 
  22  * but WITHOUT ANY WARRANTY; without even the implied warranty of 
  23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
  24  * Lesser General Public License for more details. 
  26  * You should have received a copy of the GNU Lesser General Public 
  27  * License along with this library; if not, write to the Free Software 
  28  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
  33         public $mm;                  // Bits per symbol  
  34         public $nn;                  // Symbols per block (= (1<<mm)-1)  
  35         public $alpha_to = array();  // log lookup table  
  36         public $index_of = array();  // Antilog lookup table  
  37         public $genpoly = array();   // Generator polynomial  
  38         public $nroots;              // Number of generator roots = number of parity symbols  
  39         public $fcr;                 // First consecutive root, index form  
  40         public $prim;                // Primitive element, index form  
  41         public $iprim;               // prim-th root of 1, index form  
  42         public $pad;                 // Padding bytes in shortened block  
  45         //---------------------------------------------------------------------- 
  46         public function modnn($x) 
  48             while ($x >= $this->nn
) { 
  50                 $x = ($x >> $this->mm
) + 
($x & $this->nn
); 
  56         //---------------------------------------------------------------------- 
  57         public static function init_rs_char($symsize, $gfpoly, $fcr, $prim, $nroots, $pad) 
  59             // Common code for intializing a Reed-Solomon control block (char or int symbols) 
  60             // Copyright 2004 Phil Karn, KA9Q 
  61             // May be used under the terms of the GNU Lesser General Public License (LGPL) 
  65             // Check parameter ranges 
  66             if($symsize < 0 || $symsize > 8)                     return $rs; 
  67             if($fcr < 0 || $fcr >= (1<<$symsize))                return $rs; 
  68             if($prim <= 0 || $prim >= (1<<$symsize))             return $rs; 
  69             if($nroots < 0 || $nroots >= (1<<$symsize))          return $rs; // Can't have more roots than symbol values! 
  70             if($pad < 0 || $pad >= ((1<<$symsize) -1 - $nroots)) return $rs; // Too much padding 
  74             $rs->nn 
= (1<<$symsize)-1; 
  77             $rs->alpha_to 
= array_fill(0, $rs->nn+
1, 0); 
  78             $rs->index_of 
= array_fill(0, $rs->nn+
1, 0); 
  80             // PHP style macro replacement ;) 
  84             // Generate Galois field lookup tables 
  85             $rs->index_of
[0] = $A0; // log(zero) = -inf 
  86             $rs->alpha_to
[$A0] = 0; // alpha**-inf = 0 
  89             for($i=0; $i<$rs->nn
; $i++
) { 
  90                 $rs->index_of
[$sr] = $i; 
  91                 $rs->alpha_to
[$i] = $sr; 
  93                 if($sr & (1<<$symsize)) { 
 100                 // field generator polynomial is not primitive! 
 105             /* Form RS code generator polynomial from its roots */ 
 106             $rs->genpoly 
= array_fill(0, $nroots+
1, 0); 
 110             $rs->nroots 
= $nroots; 
 111             $rs->gfpoly 
= $gfpoly; 
 113             /* Find prim-th root of 1, used in decoding */ 
 114             for($iprim=1;($iprim % 
$prim) != 0;$iprim +
= $rs->nn
) 
 115             ; // intentional empty-body loop! 
 117             $rs->iprim 
= (int)($iprim / $prim); 
 120             for ($i = 0,$root=$fcr*$prim; $i < $nroots; $i++
, $root +
= $prim) { 
 121                 $rs->genpoly
[$i+
1] = 1; 
 123                 // Multiply rs->genpoly[] by  @**(root + x) 
 124                 for ($j = $i; $j > 0; $j--) { 
 125                     if ($rs->genpoly
[$j] != 0) { 
 126                         $rs->genpoly
[$j] = $rs->genpoly
[$j-1] ^ 
$rs->alpha_to
[$rs->modnn($rs->index_of
[$rs->genpoly
[$j]] + 
$root)]; 
 128                         $rs->genpoly
[$j] = $rs->genpoly
[$j-1]; 
 131                 // rs->genpoly[0] can never be zero 
 132                 $rs->genpoly
[0] = $rs->alpha_to
[$rs->modnn($rs->index_of
[$rs->genpoly
[0]] + 
$root)]; 
 135             // convert rs->genpoly[] to index form for quicker encoding 
 136             for ($i = 0; $i <= $nroots; $i++
) 
 137                 $rs->genpoly
[$i] = $rs->index_of
[$rs->genpoly
[$i]]; 
 142         //---------------------------------------------------------------------- 
 143         public function encode_rs_char($data, &$parity) 
 147             $ALPHA_TO =& $this->alpha_to
; 
 148             $INDEX_OF =& $this->index_of
; 
 149             $GENPOLY  =& $this->genpoly
; 
 150             $NROOTS   =& $this->nroots
; 
 152             $PRIM     =& $this->prim
; 
 153             $IPRIM    =& $this->iprim
; 
 157             $parity = array_fill(0, $NROOTS, 0); 
 159             for($i=0; $i< ($NN-$NROOTS-$PAD); $i++
) { 
 161                 $feedback = $INDEX_OF[$data[$i] ^ 
$parity[0]]; 
 162                 if($feedback != $A0) {       
 163                     // feedback term is non-zero 
 165                     // This line is unnecessary when GENPOLY[NROOTS] is unity, as it must 
 166                     // always be for the polynomials constructed by init_rs() 
 167                     $feedback = $this->modnn($NN - $GENPOLY[$NROOTS] + 
$feedback); 
 169                     for($j=1;$j<$NROOTS;$j++
) { 
 170                         $parity[$j] ^
= $ALPHA_TO[$this->modnn($feedback + 
$GENPOLY[$NROOTS-$j])]; 
 175                 array_shift($parity); 
 176                 if($feedback != $A0) { 
 177                     array_push($parity, $ALPHA_TO[$this->modnn($feedback + 
$GENPOLY[0])]); 
 179                     array_push($parity, 0); 
 185     //########################################################################## 
 189         public static $items = array(); 
 191         //---------------------------------------------------------------------- 
 192         public static function init_rs($symsize, $gfpoly, $fcr, $prim, $nroots, $pad) 
 194             foreach(self
::$items as $rs) { 
 195                 if($rs->pad 
!= $pad)       continue; 
 196                 if($rs->nroots 
!= $nroots) continue; 
 197                 if($rs->mm 
!= $symsize)    continue; 
 198                 if($rs->gfpoly 
!= $gfpoly) continue; 
 199                 if($rs->fcr 
!= $fcr)       continue; 
 200                 if($rs->prim 
!= $prim)     continue; 
 205             $rs = QRrsItem
::init_rs_char($symsize, $gfpoly, $fcr, $prim, $nroots, $pad); 
 206             array_unshift(self
::$items, $rs);